Few Layer Reduced Graphene Oxide (FL-RGO) platelets (flakes) show stack structure of up to 10 monolayers of reduced graphene oxide. It is free of the oxygen containing groups. The single FL-RGO flake size ranges between a few nanometers to a dozen micrometers and the interlayer distance varies from 0.36 to 0.50 nm. This highly hydrophobic, black material has a low resistivity with the band gap of the order of meV. It does not form stable aqueous suspensions.

Model of FL-RGO platelet

The average values are calculated from the XRD patterns. FL-RGO reveals stacking nanostructure of 7.7 nm (diameter) x 1.2 nm (height) with a distance of 0.37 nm between 2-4 graphene layers (for graphite, relevant distance is 0.335 nm).

(A. Małolepszy, M. Mazurkiewicz et.al., WIM PW)

Analysis of trace impurities with XRF (X-ray Fluorescence)

FL-RGO powder: Cl(0.3%)>Mn(0.2%)>S(0.01%)=K(0.01%)=Fe(0.01%)>Ca(0.009%)> Cu(0.006%)>Ni(0.001%)

(D. Lisovytskiy et.al., IChF PAN)

Sample	Analysis	C wt. %	N wt. %	H wt. %	O and others wt %
Graphite power	1	99,97	0,009	0,172	0
(ACROS)	2	99,98	0,015	0,150	0
FL-GO	1	45,44	0,112	2,193	~48 wt % O
	2	45,29	0,192	2,495	~4 wt % others
FL-GRO	1	85,69	3,088	1,056	~9,59 wt % O
	2	85,81	3,126	0,993	~0,6 wt % others

C,H,N elemental analysis

(G. Trykowski et.al., WCh UMK)

(G. Trykowski et.al., WCh UMK)

Raman spectroscopy

D	D	G	G	I _D ∕I _G	D'	I _G /I _D	2D	2D	I _G /I _{2D}
position	FWHM	position	FWHM		position		position	FWHM	
1352	59	1580	21	0,20	1621	20,56	2686/	61/	2,61
							2725	51	
1353	127	1560	70	1,87	1604	0,69	2701	178	4,61
1351	83	1582	63	1,48	1612	2,79	2714	199	4,59
	D position 1352 1353 1351	D D position FWHM 1352 59 1353 127 1351 83	D G position FWHM position 1352 59 1580 1353 127 1560 1351 83 1582	D G G position FWHM position FWHM 1352 59 1580 21 1353 127 1560 70 1351 83 1582 63	D G G J	D G G Ip/IG D' position FWHM position FWHM position position 1352 59 1580 21 0,20 1621 1353 127 1560 70 1,87 1604 1351 83 1582 63 1,48 1612	D G G Ip/IG D' Ig/Ip position FWHM position FWHM position FWHM position 1352 59 1580 21 0,20 1621 20,56 1353 127 1560 70 1,87 1604 0,69 1351 83 1582 63 1,48 1612 2,79	D G G Ip/Ig D' Ig/Ip 2D position FWHM position FWHM position <	D G G I _D /I _G D' I _G /I _D 2D 2D position FWHM position FWHM position position FWHM position FWHM 1352 59 1580 21 0,20 1621 20,56 2686/ 61/ 1353 127 1560 70 1,87 1604 0,69 2701 178 1351 83 1582 63 1,48 1612 2,79 2714 199

FWHM - full width at half maximum

(M. Mazurkiewicz, A. Małolepszy et.al., WIM PW)

FTIR spectroscopy

XPS analysis

Sample	Concentration (at %)				
	0	С			
FL-GO	30,3	69,7			
FL-RGO	25,8	73,0			
Graphite ACROS	4,4	95,6			

(B. Lesiak-Orlowska et.al., IChF PAN)

C and O atomic content in functional groups in FL-GO, FL-RGO and graphite by XPS

Sample	C 1s group content (at%) – (BE (eV))								
	C sp ² 284.5 eV	C sp ³ 285.2 eV	С-он 286.4 eV	C-0-C 287.1 eV	C=0 288.0 eV	С-00Н 289.2 eV			
FL-GO	4.8	29.5	7.7	20.5	4.9	2.3			
FL-RGO	30.5	20.3	9.1	5.5	2.7	4.9			
Graphite ACROS	70.2	17.6	6.3	0	1.5	0			
	O 1s group content (at%) – BE (eV)								
	H ₂ O		С-Он (532.9 eV)	C-O-C (533.1 eV)	C= O	in carboxyl group C=O (531.9 eV) C-O (534.2 eV)			
FL-GO	2.0 – 535.0 eV		6.2	16.4	3.9 – 532.4 eV	1.8			
FL-RGO	5.5 – 535.6 eV		8.3	5.1	2.5 – 531.2 eV	4.4			
Graphite ACROS	0.3 – 53	35.1 eV	3.3	0	0.8 – 531.2 eV	-			

(B. Lesiak-Orlowska et.al., IChF PAN)

XRD analysis

